

 Navigation

 	
 index

 	
 next |

 	amphora 0.1 documentation

Welcome to amphora’s documentation!

Amphora is a Python library for asynchronous remote procedure executing via AMQP protocol. Amphora actively uses gevent [http://gevent.org] and requires for monkey-patching Python sockets with gevent.

Amphora works with Python 2.6 and 2.7 and was tested with RabbitMQ 2.7, 3.0 and 3.1.

Key features of Amphora:

	Reliability. You will never lose any request or response accidentally even if you suddenly lose network connection for a while.

	Designed for using with gevent [http://gevent.org] and greenlets (similar with Erlang actors).

	RPC server can subscribe and unsubscribe from different request queues on the fly. Limiting subscriptions by maximum requests and/or by timeout.

Contents:

	About reliability
	Shutting down the server

	Shutting down the client

	Shutting down the AMQP server

	Tutorial
	Simple usage

	Asynchronous calls

	Different request queues

	Broadcasting requests

	API
	Server API

	Client API

	Exceptions

Indices and tables

	Index

 Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	amphora 0.1 documentation

About reliability

Amphora allows you to shut down some components of your system for short maintenance. The system holds its current state and waits until all components start to work again. But it is not possible to save all messages in every fantastic or real case and there are some restrictions about.

Shutting down the server

If you want to immediately shut down one server then all requests will be requeued by AMQP server and sent to another server.

[image: digraph server { rankdir=RL; subgraph servers { rank=same; server1 [label="R̶P̶C̶ ̶S̶e̶r̶v̶e̶r̶", shape=box, color=red]; server2 [label="RPC Server", shape=box]; } amqp [label="AMQP Server", shape=ellipse]; client [label="RPC Client", shape=box]; client -> amqp [label="1. Send request"]; amqp -> server1 [label="2. Send request"]; server1 -> amqp [label="3. Server disconnected.\nTry another server.", style=dashed, arrowhead=onormal]; amqp -> server2 [label="4. Send request to\nanother server"]; server2 -> amqp [label="5. Response"]; amqp -> client [label="6. Response"]; }]

When there is only one server, client will wait until the server start up.

[image: digraph server { rankdir=LR; server [label="R̶P̶C̶ ̶S̶e̶r̶v̶e̶r̶", shape=box, color=red]; amqp [label="AMQP Server", shape=ellipse]; client [label="RPC Client", shape=box]; client -> amqp [label="Send request"]; amqp -> server [label="Holds request until server is up", style=dashed, arrowhead=onormal]; }]

Note

If you terminate the server when it handles requests, then
those request will be executed again when server will start up.
Be careful with side effects of request handlers.

Shutting down the client

When your client loses network connection with AMQP server, client will receive responses when network fixes. But if you manually shut down your client application, your responses will be lost. It is like to terminate application when it stores records in database (without transactions): records will be created in the database but client will not know about results of this operation because client is dead.

Keep in mind that remote function call result can be delivered only to client that sent those request.

[image: digraph client { size="10.0"; rankdir=RL; server [label="RPC Server", shape=box]; amqp [label="AMQP Server", shape=ellipse]; subgraph clients { rank=same; client1 [label="R̶P̶C̶ ̶C̶l̶i̶e̶n̶t̶", shape=box, color=red]; client2 [label="RPC Client", shape=box]; } client1 -> amqp [label="1. Send request"]; amqp -> server [label="2. Send request"]; server -> amqp [label="3. Send response"]; amqp -> client1 [label="4. Wait until client\nconnects to server\nand send response", style=dashed, arrowhead=onormal] }]

Shutting down the AMQP server

Main feature is that you will not lose your requests and responses even if you send kill -9 to AMQP server. While AMQP server is down, both client and server holds outgoing messages. Client and server will authomatically reconnects to AMQP server when it starts.

Warning

When you restart AMQP server, you will not lose requests
but each pending request can be executed twice.

 Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	amphora 0.1 documentation

Tutorial

Simple usage

Simplest case - distributed RPC. Client sends request that will be handled by one of several servers.

[image: graph simple { rankdir=LR; node[shape=box]; subgraph cluster_servers { rank=sink; style=dashed; Server1[label="RPC Server 1"]; Server2[label="RPC Server 2"]; ServerDots[label="...", shape=none]; ServerN[label="RPC Server N"]; } { rank=source; Client[label="RPC Client"]; } AMQPServer[label="AMQP Server", shape=ellipse]; Client -- AMQPServer; AMQPServer -- Server1[label="One call"]; AMQPServer -- Server2[label="Another call"]; AMQPServer -- ServerN; }]

Everything you need is to create a server instance and create a client instance. When amphora connects to AMQP server it creates all needed queues and exchanges.

Let’s start with server.

Amphora allows to have multiple RPC services in one AMQP virtual host. You should specify namespace name for each your service. In our example we will do simple arithmetic operations at RPC servers. So name our namespace “math”.

#!/usr/bin/env python
from amphora import AmqpRpcServer
server = AmqpRpcServer('math')
server.serve(nowait=False)

Now you can visit RabbitMQ management web-interface and you’ll see that amphora created exchanges rpc_math_request and rpc_math_response. Also was created queue rpc_math_request and bound to exchange with the same name.

Add some functions to RPC server:

#!/usr/bin/env python
from math import sqrt
from amphora import AmqpRpcServer
server = AmqpRpcServer('math')

@server.add_function
def sum_numbers(*args):
 return sum(args)

@server.add_function
def hypotenuse(cathetus1, cathetus2):
 return sqrt(cathetus1 ** 2 + cathetus2 ** 2)

server.serve(nowait=False)

That’s all, our server is ready! You can start as many server processes as you want.

Now we will write simple client. We need to specify one namespace both in server and client.

#!/usr/bin/env python
from amphora import AmqpRpcClient
client = AmqpRpcClient('math')

import gevent; gevent.sleep(1) # Let the amphora create all queues

Look again at RabbitMQ management. There was created another queue that looks like rpc_math_somemagicstring_response. It bound with rpc_math_response with routing key somemagicstring.

Now we can do requests:

#!/usr/bin/env python
from amphora import AmqpRpcClient
client = AmqpRpcClient('math')

import gevent; gevent.sleep(1) # Let the amphora create all queues

print client.call.sum_numbers(1, 2, 3, 4) # Prints 10
print client.call.hypotenuse(3, 4) # Prints 5.0

Amphora allows you to handle remote exceptions:

#!/usr/bin/env python
from amphora import AmqpRpcClient
client = AmqpRpcClient('math')

import gevent; gevent.sleep(1)

print client.call.hypotenuse("foo", "bar")
Traceback:
...
RemoteException: TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

Asynchronous calls

Often you don’t want to wait until remote call finished. Maybe you want to make parallel requests or you don’t bother about remote call result.

Lets create server function that can work several seconds:

from urllib2 import build_opener, URLError
from amphora import AmqpRpcServer

server = AmqpRpcServer('example')

@server.add_function
def check_is_down(site):
 opener = build_opener()
 try:
 opener.open(site)
 except URLError:
 return "Site {0} is down".format(site)
 return "Site {0} is up".format(site)

server.serve(nowait=False)

Client implementation:

from amphora import AmqpRpcClient

client = AmqpRpcClient('example')

All of them executed asynchronously
results = [client.defer(site) for site in (
 'http://google.com', 'http://yandex.com', 'http://example.com',
 'http://thereisnosuchsitename.com')]

Now you can do some stuff
do_another_work()

Time to check results
for result in results:
 print result.get()

Different request queues

More complex example. You have distributed web service that observes multiple users. One part of service (“API”) communicates with user via WebSockets or long polling. Another part of service (“Core”) contains all busines logics but does not interact with user directly.

“Core” wants to immediately show the user Alice some message or wants from user to fill form.

You have many “API” servers and each user can be observed only by one “API” server at time. “Core” does not know which of “API” servers interacts with user Alice and which interacts with Bob.

[image: digraph queues { rankdir=LR; node[shape=box]; size=10; alice[label="Alice", shape=doublecircle] subgraph apis { api1[label="API server 1"]; api2[label="API server 2"]; api3[label="API server 3"]; } amqp[label="AMQP server", shape=ellipse]; core[label="Core server"]; alice -> api1[label="Request can be handled\nby these server...", style=dashed]; alice -> api2[label="Or by these...", style=dashed]; alice -> api3[label="Or by these...", style=dashed]; api1 -> amqp [arrowhead=none]; api2 -> amqp [arrowhead=none]; api3 -> amqp [arrowhead=none]; amqp -> core [arrowhead=none]; core -> alice [arrowhead=onormal, style=dotted, label="How to send\nmessage to Alice?"]; }]

AmqpRpcServer can create request queues on demand and remove them when they becomes needless.

“API” at startup creates RPC server. When user requests new messages then “API” executes method amphora.AmqpRpcServer.receive_from_queue() and waits until some event occurs.

Meanwhile when RPC server get request to send message to user it triggers event and user request wakes up.

views.py
import gevent
from handlers import server, events

def user_get_message(request):
 username = request.user.username
 try:
 server.receive_from_queue(
 username, max_calls=1, timeout=10, block=True)
 except gevent.Timeout:
 return {'ok': True, 'message': None}
 message = events.pop(username)
 return {'ok': True, 'message': message}

handlers.py
from amphora import AmqpRpcServer

server = AmqpRpcServer("messages")
events = {}

@server.add_function
def user_show_message(username, message):
 events[username] = message

server.serve()

If queue does not exist, amphora.AmqpRpcServer.receive_from_queue() will silently wait until it creates.

Before sending messages client should create request queue for user:

client.create_new_request_queue("Alice")

When “Core” wants to send message to user it just calls:

client.defer(routing_key="Alice").show_message(
 "Alice", "Hello, Alice!")

Or you can use amphora.AmqpRpcClient.tune_function() that will determine routing key:

@client.tune_function('show_message')
def message_tune_function(args, kwargs):
 if args:
 return args[0]
 return kwargs.get('username')

client.defer.show_message("Alice", "Goodbye, Alice!") # Routing key "Alice"
client.call.show_message(username="Bob", message="Goodbye, Bob!") # Routing key "Bob"

Broadcasting requests

If you want to execute each request in all server instances, then use AmqpRpcFanoutServer and AmqpRpcFanoutClient.

Handler function in fanout can ignore request by raising amphora.IgnoreRequest.

Current implementation can’t get all results from each server. If you execute amphora.AmqpRpcFanoutClient.call() and each server will return the result then first delivered response will be returned and other responses will be lost.

 Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 previous |

 	amphora 0.1 documentation

API

Server API

	
class amphora.AmqpRpcServer(service_name, serializer=<class 'amphora.serializer.RpcJsonSerializer'>, **kwargs)

	Server class for AMQP RPC.

	Parameters:	
	service_name (str) – Namespace of your RPC service.

	serializer (AbstractRpcSerializer) – Class for generating AMQP messages.
JSON messages generated by default.

	amqp_host (str) – IP address or hostname of AMQP server.
By default 127.0.0.1.

	amqp_port (int) – TCP port of AMQP server. By default 5672.

	amqp_user (str) – Username for authentication in AMQP.
By default guest.

	amqp_password (str) – Password for authentication in AMQP.
By default guest.

	amqp_vhost – Virtual host for authentication in AMQP.
By default /.

	
add_function(func, name=None)

	Add function for handling remote call. Can be used as
common function or as decorator.

	Parameters:	
	func (callable) – Remote call handler.

	name (str) – Remote call handler name.
If omited then call names the same as handler name.

Example:

math_server.py
from gevent import monkey; monkey.patch_socket()
from amphora import AmqpRpcServer

server = AmqpRpcServer('simplemath')

def add(x, y):
 return x + y
server.add_function(add)

def substract(x, y):
 return x - y
server.add_function(substract, name="sub")

@server.add_function
def multiply(x, y):
 return x * y

@server.add_function('div')
def divide(x, y):
 return x / y

server.serve(nowait=False)

math_client.py
from gevent import monkey; monkey.patch_socket()
from amphora import AmqpRpcClient

client = AmqpRpcClient('simplemath')
TODO: must work without __import__('gevent').sleep(1)
print client.call.add(2, 3) # 5
print client.call.sub(10, 3) # 7
print client.call.multiply(5, 5) # 25
print client.call.div(64, 16) # 4

Added function can raise amphora.IgnoreRequest
for re-sending this request to another server.

	
receive_from_queue(queue, max_calls=None, timeout=None, block=True)

	Receive new calls from specified queue.

amphora.AmqpRpcServer authomatically
starts receiving from queue rpc_{service_name}_request,
but you may enable receiving calls from several queues.

	Parameters:	
	queue (str) – AMQP queue name with requests.

	max_calls (int) – Maximum call count. By default unlimited.

	timeout (float) – Stop receiving from queue after
timeout seconds.

	block (bool) – Block current greenlet until
maximum calls reached or timed out.

	Raises:	
	gevent.Timeout – When timed out and maximum calls
was not reached.

	ValueError – If queue not found.

If you set max_calls then AmqpRpcServer handles only
specified calls. After reaching maximum AmqpRpcServer cancel
consuming from queue but does not close channel until all handling
messages acked or rejected. Same rules applies for timeout.
You can specify both parameters at once.

When requests delivered too frequently, AMQP server can send
some request messages just after basic_cancel call. These
messages will be rejected with requeuing. In order to avoid
infinite resending messages that can cause denial of service,
AmqpRpcServer can reject messages with one second delay.

	
serve(nowait=True)

	Connect to AMQP and start working.

	Parameters:	nowait (bool) – Should current greenlet being blocked until
server stop? By default don’t block.

	
prepare_stop()

	Reject any new requests. Use this method
in couple with stop()
when you want to do “warm shutdown”.

	
stop()

	Stop instance and disconnect from AMQP server. All unsent
messages will be hold until you’ll call serve() again.

	
stop_publisher()

	Stop publishing messages. Consuming continues working
(if it was not stopped earlier).

	
stop_consumer()

	Stop consuming messages. Publishing continues working
(if it was not stopped earlier).

	
class amphora.AmqpRpcFanoutServer(service_name, serializer=<class 'amphora.serializer.RpcJsonSerializer'>, **kwargs)

	Fanout server class for AMQP RPC.

Fanout exchanges in AMQP used for broadcasting. If you
execute remote function via AmqpRpcFanoutClient
then request will be handled by every connected
AmqpRpcFanoutServer.

One difference from AmqpRpcServer it that
added functions can raise amphora.IgnoreRequest.
When function raises it, server sends “ack” to request message
but does not send any result or exception back to client.

Client API

	
class amphora.AmqpRpcClient(service_name, uuid=None, serializer=<class 'amphora.serializer.RpcJsonSerializer'>, timeout=60, autostart=True, **kwargs)

	Client class for AMQP RPC.

	Parameters:	
	service_name (str) – Namespace of your RPC service.

	uuid (str) – Unique identifier for current client instance.
If omited then will be generated random id.

	serializer (AbstractRpcSerializer) – Class for generating AMQP messages.
JSON messages generated by default.

	timeout (float) – Default timeout for
call

	amqp_host (str) – IP address or hostname of AMQP server.
By default 127.0.0.1.

	amqp_port (int) – TCP port of AMQP server. By default 5672.

	amqp_user (str) – Username for authentication in AMQP.
By default guest.

	amqp_password (str) – Password for authentication in AMQP.
By default guest.

	amqp_vhost – Virtual host for authentication in AMQP.
By default /.

	
defer

	Call remote procedure without blocking current greenlet.

	Parameters:	
	function_name (str) – You can specify function name directly as string.

	routing_key (str) – Routing key for remote call.

	wait_publish (bool) – Wait until request message published.

	Returns:	Helper object for calling remote procedures.

	Return type:	amphora.PrettyCaller

When helper object called, it returns gevent.event.AsyncResult
instance. When remote function completes returned value
stores into AsyncResult.

You can specify routing key for this call in two ways:

	By specifying argument routing_key.

	Usung method tune_function().

Examples:

client = amphora.AmqpRpcClient("example")

Remote call of function with name "send_email"
async_result = client.defer.send_email('root@example.com', "Hello!")
print async_result.get()

Remote call of function with name "show_message"
with custom routing key
client.create_new_request_queue("user12345")
client.defer(routing_key="user12345").show_message(
 "Hello, user12345!")

Remote call of functions with names "send_message.sms"
client.defer.send_message.sms("+12345678901", "Message")

You can use helper objects like any normal python objects.
This code calls "send_message.email.text"
and "send_message.email.html"
email_sender = client.defer.send_message.email
email_sender.text("root@example.com", "Message")
email_sender.html("user@example.com", "Message")

If you don't want to generate function name with helper
for format in ("html", "text"):
 client.defer(function_name="send_message.email." + format)(
 "root@example.com", "Hello!")

	
call

	Call remote procedure with blocking current greenlet.

	Parameters:	
	function_name (str) – You can specify function name directly as string.

	timeout (float) – Timeout for waiting for result of remote call.
If not specified then used timeout specified in constructor.

	routing_key (str) – Routing key for remote call.

	Raises:	
	amphora.RemoteException – When remote function
raises exception.

	amphora.WrongRequest – When server can’t parse request.
For example when you trying to call function not registered
in server.

	amphora.NoResult – When call timed out.

	Returns:	Helper object for calling remote procedures.

	Return type:	amphora.PrettyCaller

When helper object called, it waits until remote function
completes and returns result of remote function.

Look for examples and explanations
into defer documentation.

	
create_new_request_queue(queue, routing_key=None, nowait=False)

	Asynchronously create new queue and bind it
to request exchange.

	Parameters:	
	queue (str) – Queue label that will be used for
generating queue name.

	routing_key (str) – Routing key for binding to request exchange.

	nowait (bool) – Should block current greenlet until queue created and bound?
If True then don’t block.

If routing key not specified then routing key will be
the same as queue name.

Then name of the queue passes to template rpc_{queue}_request.

For example, if you call create_new_request_queue('test')
then creates queue rpc_test_request and binds to
request exchange via routing key test.

	
remove_request_queue(queue, nowait=False)

	Asynchronously removes queue.

	Parameters:	
	queue (str) – Queue label that will be used for
generating queue name.

	nowait (bool) – Should block current greenlet until queue deleted?
If True then don’t block.

The name of the queue generates like in
create_new_request_queue().

Warning

If you call remove_request_queue() and then
immediately call create_new_request_queue()
then queue will be deleted but may not be created.

	
tune_function(func_name)

	Set the function that will calculate queue and routing key
for specified function by passed args.

Your tuning function should return dict with two keys:
"queue" and "routing_key". (queue is deprecated).

Example:

from amphora import AmqpRpcClient

def calculate(args, kwargs): # Note, no * or **
 user_id = str(kwargs['user_id'])
 return {'queue': user_id, 'routing_key': user_id}

client = AmqpRpcClient('test')
client.tune_function('show_message')(calculate)

Will be called with routing key "12345"
client.defer.show_message("Hello!", user_id=12345)

	
serve(nowait=True)

	Connect to AMQP and start working.

	Parameters:	nowait (bool) – Should current greenlet being blocked until
server stop? By default don’t block.

	
stop()

	Stop instance and disconnect from AMQP server. All unsent
messages will be hold until you’ll call serve() again.

	
stop_publisher()

	Stop publishing messages. Consuming continues working
(if it was not stopped earlier).

	
stop_consumer()

	Stop consuming messages. Publishing continues working
(if it was not stopped earlier).

	
class amphora.AmqpRpcFanoutClient(service_name, uuid=None, serializer=<class 'amphora.serializer.RpcJsonSerializer'>, timeout=60, autostart=True, **kwargs)

	Client for AmqpRpcFanoutServer.
API is the same as for AmqpRpcClient.

Exceptions

	
exception amphora.NoResult

	Raises by amphora.AmqpRpcClient.call
when request is timed out.

	
exception amphora.WrongRequest

	Raises by amphora.AmqpRpcClient.call
or by gevent.AsyncResult.get() returned by
amphora.AmqpRpcClient.defer when server
can’t parse request. For example, when you try
to call function not registered in server.

	
exception amphora.WrongResult

	Raises by amphora.AmqpRpcClient.call
or by gevent.AsyncResult.get() returned by
amphora.AmqpRpcClient.defer when server
can’t parse response. Normally you will never get
this exception.

	
exception amphora.RemoteException(error_type, args)

	Raises by amphora.AmqpRpcClient.call
or by gevent.AsyncResult.get() returned by
amphora.AmqpRpcClient.defer when remote
function raises exception.

	Parameters:	
	error_type (str) – Class name of remote exception.

	args (tuple) – Arguments passed to remote exception.

Example:

server.py
@server.add_function
def divide(x, y):
 if x < 0:
 raise ValueError('x', x)
 elif y < 0:
 raise ValueError('y', y)
 else:
 return x / y

client.py
from amphora import RemoteException
client.call.divide(6, 3) # Prints "2"

try:
 client.call.divide(-5, 5)
except RemoteException as exc:
 print exc.error_type # Prints "ValueError"
 print exc.args # Prints '("x", -5)'

try:
 client.call.divide(10, 0)
except RemoteException as exc:
 print exc.error_type # Prints "ZeroDivisionError"

	
exception amphora.IgnoreRequest

	Reject request when raised in AmqpRpcServer
or ignore it when raised in AmqpRpcFanoutServer.

 Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	amphora 0.1 documentation

Index

 A
 | C
 | D
 | I
 | N
 | P
 | R
 | S
 | T
 | W

A

 	

 	add_function() (amphora.AmqpRpcServer method)

 	AmqpRpcClient (class in amphora)

 	AmqpRpcFanoutClient (class in amphora)

 	

 	AmqpRpcFanoutServer (class in amphora)

 	AmqpRpcServer (class in amphora)

C

 	

 	call (amphora.AmqpRpcClient attribute)

 	

 	create_new_request_queue() (amphora.AmqpRpcClient method)

D

 	

 	defer (amphora.AmqpRpcClient attribute)

I

 	

 	IgnoreRequest

N

 	

 	NoResult

P

 	

 	prepare_stop() (amphora.AmqpRpcServer method)

R

 	

 	receive_from_queue() (amphora.AmqpRpcServer method)

 	RemoteException

 	

 	remove_request_queue() (amphora.AmqpRpcClient method)

S

 	

 	serve() (amphora.AmqpRpcClient method)

 	

 	(amphora.AmqpRpcServer method)

 	stop() (amphora.AmqpRpcClient method)

 	

 	(amphora.AmqpRpcServer method)

 	

 	stop_consumer() (amphora.AmqpRpcClient method)

 	

 	(amphora.AmqpRpcServer method)

 	stop_publisher() (amphora.AmqpRpcClient method)

 	

 	(amphora.AmqpRpcServer method)

T

 	

 	tune_function() (amphora.AmqpRpcClient method)

W

 	

 	WrongRequest

 	

 	WrongResult

 Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 _static/minus.png

_static/comment-bright.png

_images/graphviz-171c01c804f95d862e70b9b8eb4967de3c64cd40.png
RPC Client

RPC-Client

4. Wait until client
connects to server
and send response
1. Send request

AMQP Server

3. Send response

2. Send request

RPC Server

search.html

 Navigation

 		
 index

 		amphora 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		amphora 0.1 documentation »

 All modules for which code is available

		amphora

 © Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_static/down.png

_static/plus.png

_images/graphviz-a59f42504d26efda8b593c671d02a672254c68b9.png
RPC Client

AMQP Server

One call

Another call

RPC Server 1

RPC Server 2

RPC Server N

_static/comment.png

changelog.html

 Navigation

 		
 index

 		amphora 0.1 documentation »

Changelog

Release 0.1.2 (2013-05-29)

		Added AmqpRpcServer.prepare_stop.

		Fixed performance issue with AMQP transactions.

		AmqpRpcServer.receive_from_queue raises ValueError if queue does not exists.

Release 0.1.1 (2013-05-22)

		Creating/deleting queues/exchanges, consuming/cancelling and publishing message operations now can block greenlet.

		By default AmqpRpcClient.defer blocks greenlet until request message published.

		Creating/deleting queues/exchanges by default block greenlet.

 © Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_static/ajax-loader.gif

_images/graphviz-a3ceb29f88197508a429a0b99fdd3a2785cb877c.png
3. Server disconnected.

Try another server.

-7 2 Send request RA
N
. 6. Response
RPC Client & d request AMQP Server 5. Response
RPC Server
4. Send request to

another server

_static/file.png

_images/graphviz-c4ec30a4cf676317a934aecc477f5b56667df641.png
RPC Client

RRC-Server

_modules/amphora.html

 Navigation

 		
 index

 		amphora 0.1 documentation »

 		Module code »

 Source code for amphora

-*- coding: utf-8 -*-
__VERSION__ = (0, 1, 1)

from client import AmqpRpcClient, AmqpRpcFanoutClient
from server import AmqpRpcServer, AmqpRpcFanoutServer
from exception import (
 RemoteException, WrongRequest, WrongResult, NoResult, IgnoreRequest)

__all__ = ('AmqpRpcClient', 'AmqpRpcFanoutClient', 'AmqpRpcServer',
 'AmqpRpcFanoutServer', 'RemoteException', 'WrongRequest',
 'WrongResult', 'NoResult', 'IgnoreRequest')

 © Copyright 2013, Vladimir Lagunov.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_static/down-pressed.png

_images/graphviz-32c3fe82708e9805bce6fee1cc86967794158346.png
Request can be handed
by these serve

Or by these,

Or by these

APl server 1

>

APl server 2

APl server 3

How to send

message to Allce?

AMQP server

Core server

